BHAAD MEI JAAO

You are on vacation on a drunken island, but you couldn't resist the temptation of solving a good old problem. It all started when a group of kids played a game they call "The Falling Coconuts". In this game, a number of coconuts fall to the ground, one by one, on a single axis, at the locations given in drops. If a coconut X lands on the ground, it remains where it is. If it lands on top of another coconut Y, one of the following things happens:

If coconut Y is surrounded on both sides by coconuts (denoted by ' O '), coconut X remains where it is.

```
X
OYO
```

If there is no coconut directly to the right of coconut Y, coconut X slides down to the position directly to the right of coconut Y .

```
X
OY -> OYX
X
Y -> YX
```

If there is a coconut directly to the right of coconut Y, but no coconut directly to the left of coconut Y, coconut X slides down to the position directly to the left of coconut Y.

X
YO -> XYO
Each time coconut X slides down to a different position, it will continue to slide (following the behavior outlined above) until it's in a place where it will not slide any further.

The task is to display the final coconut configuration.

Input

First line is $t=$ number of test cases.
Each test case consists of 2 lines, first line conataining the number of coconuts and second line contains n integers denoting the position of each coconut on the x -axis.

Output

As described in the problem statement.

Example

Input:

2
8

Output:

---O---
0000000
--O---
-000--
000000

Explanation of test case 1:

The configuration after each fallen coconut is given below:
X -> OX -> OOX -> 000X -> 0000X -> X00000 -> 000000X -> 0000000
In this diagram, ' X ' denotes the last fallen coconut.

