Yet Another Electronic Device!!!

Fascinated as he is by the uncanny world of electronics, our friend MKS now decides to launch his own creation \rightarrow A N-Digit Carry Finder (an analogue of a N-Bit Binary Adder) which can be used to find the number of times we can have a non-zero carry while adding two numbers ($A=A_{n} A_{n-1} \ldots$ $A_{2} A_{1}$ and $B=B_{n} B_{n-1} \ldots B_{2} B_{1}$) having exactly N digits.

It consists of ' N ' Full Decimal Adders. The i -th Full Adder takes as input three digits $\mathrm{A}_{\mathrm{i}}, \mathrm{B}_{\mathrm{i}}$ and $\mathrm{C}_{\mathrm{i}-1}$ and outputs a digit $C_{i}(0$ or 1$)$, which is the carry generated on adding the digits A_{i} and B_{i} and $C_{i-1} \cdot\left(C_{i}\right.$ $=1$ if $A_{i}+B_{i}+C_{i-1}>9$, otherwise 0$)$.

This C_{i} is now provided to the next ($\mathrm{i}+1$-th) Full Adder in order to be added with the digits $\mathrm{A}_{\mathrm{i}+1}$ and B_{i+1} and also to the accumulator which as the name suggests accumulates the sum of all $C_{j}(1<=j$ $<=$ i).

Note: $\mathrm{C}_{0}=0$ always and $0<=\mathrm{A}_{\mathrm{i}}, \mathrm{B}_{\mathrm{i}}<=9$.
For Example: Adding two numbers, $A=4567$ and $B=734$ (or $B=0734$), the addition proceeds as shown and the accumulator gets a final value of 3 .

In the 1 st Adder, $A_{1}=7, B_{1}=4, C_{0}=0$ and $A_{1}+B_{1}+C_{0}=11$. Therefore Carry $C_{1}=1$.
In the 2nd Adder, $A_{2}=6, B_{2}=3, C_{1}=1$ and $A_{2}+B_{2}+C_{1}=10$. Therefore Carry $C_{2}=1$.
In the 3rd Adder, $A_{3}=5, B_{3}=7, C_{2}=1$ and $A_{3}+B_{3}+C_{2}=13$. Therefore Carry $C_{3}=1$.
In the 4th Adder, $\mathrm{A}_{4}=7, \mathrm{~B}_{4}=0, \mathrm{C}_{3}=1$ and $\mathrm{A}_{4}+\mathrm{B}_{4}+\mathrm{C}_{3}=8$. Therefore Carry $\mathrm{C}_{4}=0$.
The Value in the Accumulator $=\mathrm{C}_{1}+\mathrm{C}_{2}+\mathrm{C}_{3}+\mathrm{C}_{4}=3$.

Value $=3$

Your task is to find the number of ways of getting a value \mathbf{K} in the accumulator while adding two numbers containing at most \mathbf{N} digits each. Note that we are adding the numbers in their base 10 representation. Since the total number of ways can be very large, print your answer modulo
$1000000007\left(10^{\wedge} 9+7\right)$.

Input

The first line of input contains an integer T. Then T lines follow containing two space separated integers N and K .

Output

Print the required answer modulo $1000000007\left(10^{\wedge} 9+7\right)$ in the $i^{\text {th }}$ line corresponding to the $i^{\text {th }}$ Test case.

Constraints

$1<=T<=500$
$1<=\mathrm{N}<=1000$
$1<=\mathrm{K}<=\mathrm{N}$

Example

Input:

4
11
21
22
33

Output:

45
4500
2475
136125

Explanation

For test case 1, the carry appears when adding:

- 1 and 9,2 and 9,3 and $9 \ldots 9$ and $9=9$ cases.
- 2 and 8,3 and 8,4 and $8 \ldots 9$ and $8=8$ cases.
- 3 and 7,4 and 7,5 and $7 \ldots 9$ and $7=7$ cases.
- ...
- 9 and $1=1$ case.

There are $(9+8+7+6+5+4+3+2+1+0)=45$ cases in total and in each case, the carry appears exactly once.

