Weird Construction

Vieri Corp, a technology company, has requested Bima, a constructor, to build an isosceles triangle on their brand new field. On each vertex of the triangle, they requested a pole \mathbf{A}, \mathbf{B} and \mathbf{C} where $\mathbf{A B}=\mathbf{B C}$. It is guaranteed that \mathbf{B} is the shortest pole. They also requested a rope of length \mathbf{x} and \mathbf{y} to connect the tip of the poles $\mathbf{A B}$ and $\mathbf{B C}$ respectively. Given the height of pole \mathbf{A}, \mathbf{C} and the length of rope \mathbf{x} and \mathbf{y} help Bima calculate the the height of pole B. You should minimize B. I've decreased the constraints so don't worry about precision error :) It is guaranteed that there will be an answer. The ropes cannot be loose. The pole's diameter is negligible.

Refer to the image below for better understanding.

Input Format

ACxy

Output Format

The height of pole \mathbf{B} correct to 3 decimal places.

Sample Input 1

10201018.973665961

Sample Output 1

2.000000

Sample Input 2

Sample Output 2

2.500

Constraints

- $1 \leq \mathrm{A} \leq 500000$
- $1 \leq \mathrm{C} \leq 500000$
- $1 \leq x \leq 500000$
- $1 \leq y \leq 500000$

