123 Sequence

A 123 sequence is defined as a non-decreasing sequence of length>=2, where each number is 1 or 2 or 3 . The difference between all unique pairs of numbers is given i.e. for a 123 sequence a_{1}, a_{2}, a_{3}, \ldots and the differences are $a_{j}-a_{i}$ for $1<=i<j<=n$.

Since the 123 sequence contains only $1,2,3$ the difference between any pair can be $0,1,2$. Given the number of $0 s, 1 \mathrm{~s}, 2 \mathrm{~s}$ in the difference sequence X, Y, Z respectively, your task is to find the number of distinct 123 sequences that could result in X, Y, Z.

Two 123 sequences A and B are considered different if there exists at least one i such that A_{i} is not equal to B_{i}.

Input

First line of the input contains the number of test cases T. ($T<=10000$). Then follow T lines each containing 3 space separated integer $X, Y, Z .\left(0<=X, Y, Z<=10^{8} . X+Y+Z>0\right)$.

Output

For each test case output the number of distinct 123 sequences in a separate line.

Example

Input:

3
021
123
132

Output:
1
2

Explanation

For the third test case the 123 sequences are $1,2,3,3$ and $1,1,2,3$.

