Lagrange's Four-Square Theorem

The fact that any positive integer has a representation as the sum of at most four positive squares (i.e. squares of positive integers) is known as Lagrange's Four-Square Theorem. The first published proof of the theorem was given by Joseph-Louis Lagrange in 1770. Your mission however is not to explain the original proof nor to discover a new proof but to show that the theorem holds for some specific numbers by counting how many such possible representations there are. For a given positive integer n, you should report the number of all representations of n as the sum of at most four positive squares. The order of addition does not matter, e.g. you should consider $4^2 + 3^2$ and $3^2 + 4^2$ are the same representation.

For example, let's check the case of 25. This integer has just three representations $1^{2}+2^{2}+2^{2}+4^{2}$, $3^{2}+4^{2}$, and 5^{2} . Thus you should report 3 in this case. Be careful not to count $4^{2}+3^{2}$ and $3^{2}+4^{2}$ separately.

Input

The input is composed of at most 255 lines, each containing a single positive integer less than 2^15, followed by a line containing a single zero. The last line is not a part of the input data.

Output

The output should be composed of lines, each containing a single integer. No other characters should appear in the output. The output integer corresponding to the input integer n is the number of all representations of n as the sum of at most four positive squares.

Example

738