Lagrange's Four-Square Theorem

The fact that any positive integer has a representation as the sum of at most four positive squares (i.e. squares of positive integers) is known as Lagrange's Four-Square Theorem. The first published proof of the theorem was given by Joseph-Louis Lagrange in 1770. Your mission however is not to explain the original proof nor to discover a new proof but to show that the theorem holds for some specific numbers by counting how many such possible representations there are. For a given positive integer n, you should report the number of all representations of n as the sum of at most four positive squares. The order of addition does not matter, e.g. you should consider $4^{\wedge} 2+3^{\wedge} 2$ and $3^{\wedge} 2+4^{\wedge} 2$ are the same representation.

For example, let's check the case of 25 . This integer has just three representations $1^{\wedge} 2+2^{\wedge} 2+2^{\wedge} 2+4^{\wedge} 2,3^{\wedge} 2+4^{\wedge} 2$, and $5^{\wedge} 2$. Thus you should report 3 in this case. Be careful not to count $4^{\wedge} 2+3^{\wedge} 2$ and $3^{\wedge} 2+4^{\wedge} 2$ separately.

Input

The input is composed of at most 255 lines, each containing a single positive integer less than $2^{\wedge} 15$, followed by a line containing a single zero. The last line is not a part of the input data.

Output

The output should be composed of lines, each containing a single integer. No other characters should appear in the output. The output integer corresponding to the input integer n is the number of all representations of n as the sum of at most four positive squares.

Example

Input:
1
25
2003
211
20007
0

Output:

