The last digit re-visited

Pappu was doing the work of his math class about three days but he is tired of make operations a lot and he should deliver his task tomorrow. His math's teacher gives two numbers a and b. The problem consist in find the last digit of the potency of base a and index b. Help Pappu with his problem. You are given two integer numbers: the base a (number of digits d , such that $1<=\mathrm{d}<=$ 1000) and the index $\mathrm{b}\left(0<=\mathrm{b}<=922^{*} 10^{\wedge} 15\right)$. You have to find the last digit of $\mathrm{a}^{\wedge} \mathrm{b}$.

Input

The first line of input contains an integer t, the number of test cases ($t<=30$). t test cases follow. For each test case will appear a and b separated by space.

Output

For each test case output an integer per line representing the result.

Example

Input:
3
310
62
15053

Output:

9
6
0

Source limit is 700 Bytes.

