Johnny Learns Modular exponentiation

Description

After Johnny solved problem A in LCPC2012 practice contest he decided to read more about modulo operation so he read the following article.

Modular exponentiation is a type of exponentiation performed over a modulus. It is particularly useful in computer science, especially in the field of cryptography.

A "modular exponentiation" calculates the remainder when a positive integer b (the base) raised to the e-th power (the exponent), and the total quantity is divided by a positive integer m , called the modulus. In symbols, this is, given base b, exponent e, and modulus m, the modular exponentiation c is: $c=\left(b^{\wedge} e\right) \bmod M$

For example, given $b=5, e=3$, and $m=13$, the solution c is the remainder of dividing $5^{\wedge} 3$ by 13 , which is the remainder of 125 / 13, or 8 .

If b, e, and m are non-negative, and $b<m$, then a unique solution c exists with the property $0 \leq c<m$.

Input Format

Input will start with \boldsymbol{T} number of test cases. Followed by \boldsymbol{T} test cases each test has three integers $0<b<10^{9}$ and $0<e<10^{18}$ and $0<\mathrm{m}<10^{9}$

Output Format

For each test case, output the result using the following format:
Where \boldsymbol{k} is the test case number (starting at 1), a single period, a single space, then

Sample Input	Sample Output
1	1.1
328	

