Lexicographic Order 2

An ordering for the Cartesian product x of any two sets A and B with order relations $<A$ and $<B$, respectively, such that if $(a 1, b 1)$ and $(a 2, b 2)$ both belong to $A x B$, then $(a 1, b 1)<(a 2, b 2)$ iff either

- a1 <A a2, or
- a1 = a2 and b1 <B b2.

The lexicographic order can be readily extended to cartesian products of arbitrary length by recursively applying this definition, i.e., by observing that $\mathrm{AxBxC}=\mathrm{Ax}(\mathrm{BxC})$.

When applied to permutations, lexicographic order is increasing numerical order. For example, the permutations of $\{1,2,3\}$ in lexicographic order are 123, 132, 213, 231, 312, and 321.

You will be given a permutation of n first natural numbers. You need to find k-th lexicographically next permutaion. Also we will consider that the lexicographically last permutaion is followed by the first one in the ordering.

Input

The first line is number t - the amount of test cases. Each test case starts with numbers n and k. Then n natural numbers follow which are the elements of the given permutation.

Constraints

$1<=\mathrm{t}<=100$
$1<=\mathrm{n}<=20$
$0<=k<n$!

Output

For each test case output the k-th lexicographically next permutation after the given one.

Example

Input:

3
33
123
32
213
35
231

Output:
231
312
213

