Lexicographic Order 4

An ordering for the Cartesian product x of any two sets A and B with order relations $<A$ and $<B$, respectively, such that if $(a 1, b 1)$ and $(a 2, b 2)$ both belong to $A x B$, then $(a 1, b 1)<(a 2, b 2)$ iff either

- a1 <A a2, or
- a1 = a2 and b1 <B b2.

The lexicographic order can be readily extended to cartesian products of arbitrary length by recursively applying this definition, i.e., by observing that $\mathrm{AxBxC}=\mathrm{Ax}(\mathrm{BxC})$.

When applied to subsets, two subsets are ordered by their smallest elements. For example, the subsets of $\{1,2,3\}$ in lexicographic order are $\},\{1\},\{1,2\},\{1,2,3\},\{1,3\},\{2\},\{2,3\},\{3\}$.

You will be given a subset of a set of first n natural numbers. You need to find k-th lexicographically next subset. Also we will consider that lexicographically last subset is followed by the first one in the ordering.

Input

The first line is number t - the amount of test cases. Each test case starts with numbers n and k. The next line describes the given subset. The description starts with number q - the amount of elements in the subset, followed by q natural numbers - the elements of the subset.

Constraints

$1<=\mathrm{t}<=5$
$1<=\mathrm{n}<=50000$
$0<=k<=10000$
$0<=\mathrm{q}<=\mathrm{n}$

Output

For each test case output the k-th lexicographically next subset after the given one. If the result is an empty set then print "empty".

Example

Input:

3
31
13
33
213
55
0
Output:
empty
3

