Lightning Conductor

Progressive climate change has forced the Byteburg authorities to build a huge lightning conductor that would protect all the buildings within the city. These buildings form a row along a single street, and are numbered from $\mathbf{1}$ to \mathbf{n}.

The heights of the buildings and the lightning conductor are non-negative integers. Byteburg's limited funds allow construction of only a single lightning conductor. Moreover, as you would expect, the higher it will be, the more expensive.

The lightning conductor of height \mathbf{p} located on the roof of the building \mathbf{i} (of height hi) protects the building \mathbf{j} (of height $\mathbf{h j}$) if the following inequality holds:
hj <= hi $+\mathrm{p}-\operatorname{sqrt}(\operatorname{abs}(\mathrm{i}-\mathrm{j}))$
where $|\mathrm{i} \mathbf{j}|$ denotes the absolute value of the difference between \mathbf{i} and \mathbf{j}.
Byteasar, the mayor of Byteburg, asks your help. Write a program that, for every building, determines the minimum height of a lightning conductor that would protect all the buildings if it were put on top of the building i.

Input

In the first line of the standard input there is a single integer $\mathbf{n}(\mathbf{1}<=\mathbf{n}<=\mathbf{5 0 0 , 0 0 0})$ that denotes the number of buildings in Byteburg. Each of the following \mathbf{n} lines holds a single integer hi ($\mathbf{1}<=$ $\mathbf{h i}<=\mathbf{1 , 0 0 0}, \mathbf{0 0 0}, \mathbf{0 0 0}$) that denotes the height of the i -th building.

Output

Your program should print out exactly \mathbf{n} lines to the standard output. The \mathbf{i}-th line should give a non-negative integer pi denoting the minimum height of the lightning conductor on the i-th building.

Example

For the input data:
the correct result is:

