Another Longest Increasing Subsequence Problem

Given a sequence of \mathbf{N} pairs of integers, find the length of the longest increasing subsequence of it.

An increasing sequence $A_{1} . . A_{n}$ is a sequence such that for every $i<j, A_{i}<A_{j}$.
A subsequence of a sequence is a sequence that appears in the same relative order, but not necessarily contiguous.

A pair of integers $\left(x_{1}, y_{1}\right)$ is less than $\left(x_{2}, y_{2}\right)$ iff $x_{1}<x_{2}$ and $y_{1}<y_{2}$.

Input

The first line of input contains an integer $\mathbf{N}(2 \leq \mathbf{N} \leq 100000)$.
The following \mathbf{N} lines consist of \mathbf{N} pairs of integers $\left(x_{i}, y_{i}\right)\left(-10^{9} \leq x_{i}, y_{i} \leq 10^{9}\right)$.

Output

The output contains an integer: the length of the longest increasing subsequence of the given sequence.

Example

Input:
8
13
32
11
45
63
99
87
76
Output:
3

