Another Longest Increasing Subsequence Problem

<u>English</u> <u>Vietnamese</u>

Given a sequence of **N** pairs of integers, find the length of the **longest increasing subsequence** of it.

An **increasing sequence** $A_1..A_n$ is a sequence such that for every i < j, $A_i < A_i$.

A **subsequence** of a sequence is a sequence that appears in the same relative order, but not necessarily contiguous.

A pair of integers (x_1, y_1) is less than (x_2, y_2) if $x_1 < x_2$ and $y_1 < y_2$.

Input

The first line of input contains an integer **N** ($2 \le N \le 100000$).

The following **N** lines consist of **N** pairs of integers (x_i, y_i) (-10⁹ $\leq x_i, y_i \leq 10^9$).

Output

The output contains an integer: the length of the longest increasing subsequence of the given sequence.

Example

Input:

8

13

32

1 1

4 5

63

99

Output:

3

Original problem: http://www.spoj.com/problems/LIS2/.