Sorting is not easy

An N -element permutation is an N -element sequence of distinct numbers from the set $\{1,2, \ldots, \mathrm{n}\}$. For example the sequence $2,1,4,5,3$ is a 5 -element permutation. P is an N -element permutation. Your task is to sort P in ascending order. But because it is very simple, I have a new rule for you. You have two sequences P and Q. P is an N-element permutation and Q is initially empty and formed by sorting P (i.e. finally $Q=1,2,3, \ldots, N$). You have to implement N steps to sort P. In the i-th step, P has $\mathrm{N}-\mathrm{i}+1$ remaining elements, Q has $\mathrm{i}-1$ elements and you have to choose some x -th element (from the $\mathrm{N}-\mathrm{i}+1$ available elements) of P and put it to the left or to the right of Q . The cost of this step is equal to $x^{*} i$. The total cost is the sum of costs of individual steps. After N steps, Q must be an ascending sequence. Your task is to minimize the total cost.

Input

The first line of the input file is $T(T \leq 10)$, the number of test cases. Then descriptions of T test cases follow. The description of each test case consists of two lines. The first line contains a single integer $N(1 \leq N \leq 1000)$. The second line contains N distinct integers from the set $\{1,2, .$. , $N\}$, the N-element permutation P.

Output

For each test case your program should write one line, containing a single integer - the minimum total cost of sorting.

Example

$\mathrm{N}=4$
$P=\{4,1,3,2\}$
Step 1, Choose 3-rd, $\mathrm{P}=\{4,1,2\}, \mathrm{Q}=\{3\}$, Cost=3
Step 2, Choose 1-st, $P=\{1,2\}, Q=\{3,4\}$, Cost=2
Step 3, Choose 2-nd, $P=\{1\}, \mathrm{Q}=\{2,3,4\}$, Cost=6
Step 4, Choose 1-st, $P=\{ \}, Q=\{1,2,3,4\}$, Cost=4
The total cost is 15.
Another way to sort:
Step 1, Choose 4-th, $\mathrm{P}=\{4,1,3\}, \mathrm{Q}=\{2\}$, Cost=4
Step 2, Choose 2-nd, $P=\{4,3\}, Q=\{1,2\}$, Cost=4
Step 3, Choose 2-nd, $P=\{4\}, Q=\{1,2,3\}$, Cost=6
Step 4, Choose 1-st, $\mathrm{P}=\{ \}, \mathrm{Q}=\{1,2,3,4\}$, Cost=4
The total cost is 18.
Input:
1
4
4132

Output:

