Euclids algorithm revisited

Consider the famous Euclid algorithm to calculate the GCD of two integers (a, b):

```
int gcd(int a, int b) {
    while (b != 0) {
        int temp = a;
        a = b;
        b = temp % b;
    }
    return a;
}
```

for input $(7,3)$ the 'while' loop will run 2 times as follows: $(7,3)=>(3,1)=>(1,0)$
Now given an integer N you have to find the smallest possible sum of two non-negative integers $a, b(a>=b)$ such that the while loop in the above mentioned function for (a, b) will run exactly N times.

Input

First line of input contains $\mathrm{T}(1<=\mathrm{T}<=50)$ the number of test cases. Each of the following T lines contains an integer $\mathrm{N}\left(0<=\mathrm{N}<=10^{\wedge} 18\right)$.

Output

For each test case print the required answer modulo 1000000007 in a separate line.

Example

Input:
1
1
Output:
2
Explanation: $(1,1)$ is the required pair.

