Maximum Sum of the Array

You are given an array of \boldsymbol{N} integers. You tried to sum all the elements of the array, but you see the summation does not reach the maximum.

So you decide to divide the array into two arrays. You can choose any index ($1 \leq i \leq N$) from array $\mathbf{A r}$ and remove the value from the Ar array and add it to another array A. Also, you can choose any index ($1 \leq j \leq N$) and remove the value from Ar and add it to another array B

Suppose an array $\operatorname{ar}=[1,2,3,0,5]$, so you can choose index $1,3,5$ and remove it from array ar and add it to array A. So $\operatorname{ar}=[., 2, ., 0,$.$] and A=[1,3,5]$. You can choose index 2, 4 and remove it from array ar and add it to array B. So $\operatorname{ar}=[., ., ., .,$.$] and B=[2,0]$.

You can do any operation until array arbecomes empty.
Here is the main problem. You need to divide ar in such way that $\operatorname{SUM}(A)-\operatorname{SUM}(B)$ gets maximized.
Here $\operatorname{SUM}(X)$ means summetion of the array x. Example $x=[1,5,8]$ so $\operatorname{SUM}(x)=1+5+8=14$.
Now Print the maximum $\operatorname{SUM}(A)$ - $\operatorname{SUM}(B)$ you can get.
Both A and B array needs to contain atleast 1 element from array ar.

Input Format

- First Line will contain $\mathbf{N}\left(2 \leq N \leq 10^{6}\right)$, the number of elements present in the array.
- Second line will contain array ar of N elements. $\left(-10^{9} \leq a r_{i} \leq 10^{9}\right)$.

Output Format

Print the maximum value you can get of $S U M(A)-S U M(B)$ after doing those operations.

Example

Input 01:

5
12345
Output 01:
13
Input 02:
6
-1 12 -2 3-3
Output 02:
12

