Math I

You are given n integers $a_{1}, a_{2} \ldots a_{n}\left(0<=a_{i}<=n\right)$. The sum $a_{1}+a_{2}+\ldots+a_{n}$ does not exceeded n. Your task is to find n other integers $x_{1}, x_{2} \ldots x_{n}$ (note that x_{i} may be negative numbers) satisfying the following conditions:

- $\left(x_{i}-x_{i+1}+a_{i+1}=0\right)$ or $\left(x_{i}-x_{i+1}+a_{i+1}=1\right)$ for $i=1 . . n-1$
- $\left(x_{n}-x_{1}+a_{1}=0\right)$ or ($\left.x_{n}-x_{1}+a_{1}=1\right)$
- $\left|x_{1}\right|+\left|x_{2}\right|+\ldots+\left|x_{n}\right|$ is minimized

Input

The first line of the input file contains an integer t representing the number of test cases ($\mathrm{t}<=20$). Then t test cases follow. Each test case has the following form:

- The first line contains $n(1<=n<=1000)$
- The second line contains n integers $a_{1}, a_{2} \ldots a_{n}$ separated by single spaces

Output

For each test case output a single value: the minimum value of $\left|x_{1}\right|+\left|x_{2}\right|+\ldots+\left|x_{n}\right|$

Example

Input:
2
4
2100
5
01220

Output:
1
3

Explanation

In the former case, the optimal solution is ($x_{1}=0, x_{2}=0, x_{3}=0, x_{4}=-1$)
In the latter case, the optimal solution is ($x_{1}=-1, x_{2}=-1, x_{3}=0, x_{4}=1, x_{5}=0$)

