Matrica

A matrix is a rectangular table of letters. A square matrix is a matrix with an equal number of rows and columns. A square matrix M is called symmetric if its letters are symmetric with respect to the main diagonal $\left(M_{i, j}=M_{j, i}\right.$ for all pairs of i and $\left.j\right)$.

For example, the following two matrices are symmetric:

AAB	AAA
ACC	ABA
BCC	AAA

However, the following two are not:

ABCD	AAB
ABCD	ACA
ABCD	DAA
ABCD	

Given a collection of available letters, you are to output a subset of columns in the lexicographically smallest symmetric matrix which can be composed using all the letters. If no such matrix exists, output "IMPOSSIBLE".

To determine if matrix A is lexicographically smaller than matrix B, consider their elements in row-major order (as if you concatenated all rows to form a long string). If the first element in which the matrices differ is smaller in A, then A is lexicographically smaller than B.

Input

The first line of input contains two integers $N(1 \leq N \leq 30000)$ and $K(1 \leq K \leq 26)$. N is the dimension of the matrix, while K is the number of distinct letters that will appear.

Each of the following K lines contains an uppercase letter and a positive integer, separated by a space.

The integer denotes how many corresponding letters are to be used. For example, if a line says "A 3", then the letter A must appear three times in the output matrix.

The total number of letters will be exactly N^{2}. No letter will appear more than once in the input.
The next line contains an integer $\mathrm{P}(1 \leq \mathrm{P} \leq 50)$, the number of columns that must be output.
The last line contains P integers, the indices of columns that must be output. The indices will be between 1 and N inclusive, given in increasing order and without duplicates.

Output

If it is possible to compose a symmetric matrix from the given collection of letters, output the required columns on N lines, each containing P character, without spaces. Otherwise, output "IMPOSSIBLE" (quotes for clarity).

Example

Input:
33
A 3
B 2
C 4
3
123
Output:
AAB
ACC
BCC
Input:
45
E 4
A 3
B 3
C 3
D 3
2
24
Output:
AC
BE
DE
ED
Input:
46
F 1
E 3
A 3
B 3
C 3
D 3
4
1234
Output:
IMPOSSIBLE
Warning: large input/output data.
Note: The test data for this problem consist of the official test cases from the contest, as well some cases of my own.

