Matrix Summation

A $\mathrm{N} \times \mathrm{N}$ matrix is filled with numbers. BuggyD is analyzing the matrix, and he wants the sum of certain submatrices every now and then, so he wants a system where he can get his results from a query. Also, the matrix is dynamic, and the value of any cell can be changed with a command in such a system.

Assume that initially, all the cells of the matrix are filled with 0 . Design such a system for BuggyD. Read the input format for further details.

Input

The first line of the input contains an integer \mathbf{t}, the number of test cases. \mathbf{t} test cases follow.
The first line of each test case contains a single integer \mathbf{N} ($1<=\mathbf{N}<=1024$), denoting the size of the matrix.

A list of commands follows, which will be in one of the following three formats (quotes are for clarity):

1. "SET x y num" - Set the value at cell (x, y) to num ($0<=x, y<N$).
2. "SUM $\mathrm{x} 1 \mathrm{y} 1 \times 2 \mathrm{yz}$ " - Find and print the sum of the values in the rectangle from ($\mathrm{x} 1, \mathrm{y} 1$) to (x 2 , y 2), inclusive. You may assume that $\mathrm{x} 1<=\mathrm{x} 2$ and $\mathrm{y} 1<=\mathrm{y} 2$, and that the result will fit in a signed 32-bit integer.
3. "END" - Indicates the end of the test case.

Output

For each test case, output one line for the answer to each "SUM" command. Print a blank line after each test case.

Example

```
Input:
1
4
SET 001
SUM 0 0 3 3
SET 2 2 12
SUM 2 2 2 2
SUM 2 2 3 3
SUM 0 0 2 2
END
```


Output:

