
THE MAX LINES

In this problem you will be given a half-circle. The half-circle's radius is *r*. You can take any point A on the half-circle and draw 2 lines from the point to the two sides of the diameter(AB and AC). Let the sum of square of one line's length and the other line's length is *s*

Like in the figure $s = AB^2 + AC$. And BC = 2r.

Now given *r* you have to find the maximum value of *s*. That is you have to find point A such that $AB^2 + AC$ is maximum.

Input

First line of the test case will be the number of test case T ($1 \le T \le 1000$). Then T lines follows. On each line you will find a integer number $r(1 \le r \le 1000000)$; each representing the radius of the half-circle.

Output

For each input line, print a line containing "Case I: ", where I is the test case number and the maximum value of *s*. Print 2 digit after decimal (Errors should be less then .01).

Example

Sample Input: 1 Sample Output:

Case 1: 4.25