Minimum Cost

Problem Statement

Given two string \mathbf{S} and \mathbf{T}. You can delete a character from \mathbf{S} with cost 15 and a Character \mathbf{T} with cost 30 . Your goal is to make the string equal (same). It is not mandatory to delete character.

For example: $S=\mathbf{a X b}$ and $T=Y a b$. Now, if we delete X from S and Y from T, then total cost $=15+30=45$. And S and T will become ab.

Another example: $\mathrm{S}=\mathbf{a b c d}, \mathrm{T}=\mathbf{a c d b}$, Now total cost $=15+30=45$.

Input

Input consists of pairs of lines. The first line of a pair contains the first string \mathbf{S} and the second line contains the second string \mathbf{T}. Each string is on a separate line and consists of at most 1,000 characters. The end of input occurs when the first sequence starts with an "\#" character (without the quotes).

Output

For each subsequent pair of input lines, output a line containing one integer number which the minimum cost to make the string equal (same).

Sample Input/Output

Sample Input	
axb	45
ab	90
ab	60
cd	45
ko	
p	
abcd	
acdb	
$\#$	

Problem Setter: Shipu Ahamed, Dept. of CSE
Bangladesh University of Business and Technology (BUBT)

