Maximum Edge of Powers of Permutation

For a directed graph G where any vertex v has two weights A_{v} and B_{v}, we call $A_{u}+B_{v}$ the weight of a edge (u, v). Let $\operatorname{MaxEdge}(G)$ be the maximum weight of the edges of G.

Given a permutation P on $1 . . n$, we can derive a directed graph $G=(V, E)$ where $V=\{1, . ., n\}$ and (u, v) in E iff $P(u)=v$. Your task is to compute $\operatorname{MaxEdge}\left(P^{k}\right)$ for every k in $0 . . q-1$.

Input

The first line contains a positive integer n.
The second line contains n integers in $\{1, . ., n\}$, denoting the permutation P.
The third and the fourth line both contain n natural numbers, A_{1}, \ldots, A_{n} and $B_{1}, . ., B_{n}$ respectively. The fifth line contains a positive integer q.

Output

The only one line contains q integers $\operatorname{MaxEdge}\left(P^{0}\right), . ., \operatorname{MaxEdge}\left(P^{q-1}\right)$, separated by a single space.

Example

Input:
3
321
012
220
5

Output:
34343

Constraint

$n<=66000$
$A_{i}, B_{i}<=16$
$q<=10^{6}$

Notice

The time limit is somehow strict. Please do not spoil the problem with a cheating solution.
Description updated on 2010-7-11

