Minimum Distance

Given an weighted tree, you are to find two nodes A and B of the tree(A and B needn't to be different), such that the length of the path between A and B is less than or equals to a given integer S, and the maximum distance from each node of the tree to this path is minimum.

Input

The first line of the input contains a single integer T , the number of test cases. T blocks follow.
For each test case, the first line contains two space-separated integer $N(1<=N<=100000)$ and $\mathrm{S}(0<=\mathrm{S}<=100000000)$. $\mathrm{N}-1$ lines follow, each contains three integers $\mathrm{X}(1<=\mathrm{X}<=\mathrm{N}), \mathrm{Y}(1<=\mathrm{Y}<=\mathrm{N})$ and $Z(1<=Z<=1000)$, denotes that there is an (undirected) edge weighted Z between node X and Y . The input is correct.

Output

T lines, each contains a single integer denoted the minimum distance.

Example

Input:

2
52
125
232
244
253
86
132
232
346
453
464
472
783
Output:
5
5

Warning: large input/output data, be careful with certain languages

