NERED

English
In the nearby kindergarten they recently made up an attractive game of strength and agility that kids love. The surface for the game is a large flat area divided into $N \times N$ squares. The children lay large spongy cues onto the surface. The sides of the cubes are the same length as the sides of the squares. When a cube is put on the surface, its sides are aligned with some square. A cube may be put on another cube too. Kids enjoy building forts and hiding them, but they always leave behind a huge mess. Because of this, prior to closing the kindergarten, the teachers rearrange all the cubes so that they occupy a rectangle on the surface, with exactly one cube on every square in the rectangle. In one moving, a cube is taken off the top of a square to the top of any other square.

Write a program that, given the state of the surface, calculates the smallest number of moves needed to arrange all cubes into a rectangle.

Input

The first line contains the integers N and $M\left(1 \leq N \leq 100,1 \leq M \leq N^{\wedge} 2\right)$, the dimensions of the surface and the number of cubes currently on the surface.

Each of the following M lines contains two integers R and $C(1 \leq R, C \leq N)$, the coordinates of the square that contains the cube.

Output

Output the smallest number of moves. A solution will always exist.

Sample

Input:

43
22
44
11
Output:
2
Input:
58
22
32
42
24
34
44
23
23
Output:

In the second example, a cube is moved from $(2,3)$ to $(3,3)$, from $(4,2)$ to $(2,5)$ and from $(4,4)$ to $(3,5)$.

