FEASTOFPIGS

The pig's are having a feast tonight!! There are N momos numbered from 0 to $N-1$. They are all arranged in a row on a table. Also K pigs are attending the feast. The $j^{\text {th }}$ pig has hunger a[j]. A pig with hunger $a[j]$ only eats all momos with number i such that when i is divided by $a[j]$, the remainder is 0 . For example, if there are 20 momos and a pig has hunger 3, then the pig will eat momos at position $0,3,6,9,12,15,18$. Once a momo at a particular position is eaten by one pig, it cannot be eaten by a different pig.

You're task is simple, given the number of momos, and hunger of K pigs, find the total number of momos left after the feast.

Input

The first line of the input contains two integers N and K, where N is the number of momos and K is the number of pigs. Lines $2,3, \ldots, K+1$ describe the hunger of K pigs. Line $i+1(1 \leq i \leq K)$ contains a single integer representing the hunger of the $i^{\text {th }}$ pig(i.e. $\left.a[i]\right)$.

It is guaranteed that:

Either $\left(1 \leq N \leq 10^{6}\right.$ and $\left.1 \leq K \leq 100\right)$ or $\left(1 \leq N \leq 10^{14}\right.$ and $\left.1 \leq K \leq 20\right)$

The hunger of every pig lies between 1 and N.

Output

A line containing a single integer, which is the number of momos left on the table after all pigs have finished eating.

Example

Input:

203
3
6
5
Output:
11

