Monodigital Representations

Let K be a decimal digit different from 0 . We say that an arithmetic expression is a \mathbf{K} representation of the integer \mathbf{X} if a value of this expression is X and if it contains only numbers composed of a digit K. (All the numbers are of course decimal). The following arithmetical operations are allowed in the expression: addition, subtraction, multiplication and division. Round brackets are allowed too. Division may appear only when a dividend is a multiple of a divisor.

Example

Each of the following expressions is the 5-representation of the number 12:

- $5+5+(5: 5)+(5: 5)$
- $(5+(5))+5: 5+5: 5$
- 55:5+5:5
- $(55+5): 5$

The length of the K-representation is the number of occurrences of digit K in the expression. In the example above the first two representations have the length 6, the third -5 , and the forth -4 .

Task

Write a program which:

- reads the digit K and the series of numbers from the standard input,
- verifies for each number from the series, whether it has a K-representation of length at most 8 , and if it does, then the program finds the minimal length of this representation,
- writes results to the standard output.

Input

The number of test cases t is in the first line of input, then t test cases follow separated by an empty line. The first line of each test case contains digit K, K is en element of $\{1, \ldots, 9\}$. The second line contains number $n, 1<=n<=10$. In the following n lines there is the series of natural numbers $a_{1}, \ldots, a_{n}, 1<=a_{i}<=32000$ (for $i=1, . ., n$), one number in each line.

Output

The output for each test case composes of n lines. The i-th line should contain:

- exactly one number which is the minimal length of K-representation of a_{i}, assuming that such a representation of length not grater then 8 exists,
- one word NO, if the minimal length of the K-representation of the number a_{i} is grater than 8 .

Example

Sample input:

Sample output

4
NO

