Playing With Subarray

Alice loves to play with array of integers. He has an array A[] of integers. Bob, friend of Alice is a smart guy. Seeing Alice's curiousness about array Bob decided to give Alice a task. Before giving the task Bob ask Alice if he knows about $\boldsymbol{K} _$min_subarray? A K_min_subarray is the minimum value of a K length subarray of array A[]. After Bob knows about K_min_subarray, Alice gives Bob Q queries about array A[]. In each query he will give two integers L,R. Alice have to answer the largest value of all possible K_min_subarray in between L to R. Here each subarray's starting position must be $>=L$, ending position must be <= R and the length of the subarray must be K.

Input

In the first line given t (Number of test cases)
For each test case there will be the following-

In the first line given two integers n (Size of the array) and K (Length of the subarray). In the second line given the elements($A[i]$) of the array In the next line given an integer Q (The number of queries) In the next Q lines given two integers L, R

Constrains:

$1<=\mathrm{t}$ <= 10
$1<=\mathrm{n}<=10^{\wedge} 5$
$1<=\mathrm{K}<=\mathrm{n}$
$-10^{\wedge} 18<=A[i]<=10^{\wedge} 18$
$1<=Q<=10^{\wedge} 5$
$1<=L<=R<=n$
$t^{*} \max (n, Q)<=10^{\wedge} 5$

Here all positions are 1 based.

Output

For each test case you have to output the following-
Print the test case no in one line in the format "Case x :" without quote, where x is the case number.

For each query output the largest value of all possible K_min_subarray in between L to R in each line. If answer is not possible print "Impossible" without quote.

For better understanding see the sample input output and the explanation of sample.

Example

Input:

2
73
$10515-53112$
4
14
23
36
57
51
12345
3
13
25
44

Output:

Case 1:
5
Impossible
-5
2
Case 2:
3
5
4

Explanation:

Test Case 1:

Query 1: Here 2 subarray possible of length 3 between pos 1 to $4:\{10,5,15\},\{5,15,-5\}$.
Minimum value in $\{10,5,15\}$ is 5 Minimum value in $\{5,15,-5\}$ is -5 Maximum of $5 \&-5$ is 5 .
So, answer is 5
Query 2: Here no subarray is possible of length 3 between pos 2 to 3 .
So, you have to print "Impossible"
Query 3: Here 2 subarray possible of length 3 between pos $3 \& 6:\{15,-5,3\},\{-5,3,11\}$.
Minimum value in $\{15,-5,3\}$ is -5 Minimum value in $\{-5,3,11\}$ is -5 Maximum of $-5 \&-5$ is -5 .
So, answer is -5 .

