Power it!

Wersja polska

For a given numbers x, y and n calculate

$$
x^{y} \bmod n,
$$

i.e. a number r such that $0<=r<n$ and $n \mid\left(x^{y}-r\right)$.

Input

t [the number of test cases $<=10$]
x y $n\left[2<=x, n<=2^{30}, 0<=y<=2^{30}\right.$ - easy ($10^{10000}-$ hard $)$

First two test cases are easy, the following four test cases are hard. Threshold is 2 pts (the problem is accepted).

Output

$r\left[\right.$ such that $\left.x^{y}=r(\bmod n)\right]$

Example 1 (easy)

Input:
2
54015779489100829472960975
827371214966345673443599139

Output:

350431544
391669493

Example 2 (hard)

Input:
1
29809803479019128498725234618646313272321221008098565

Output:

718185534

