Make Sets

For a given number \mathbf{N} you have \mathbf{K} copies of each number from 1 to \mathbf{N}. Therefore, you have a total of $\mathbf{N}^{*} \mathbf{K}$ numbers. You need to form \mathbf{M} sets $\mathbf{s 1} \mathbf{, s 2}, \mathbf{s} 3, \ldots$. sm where a set should contain unique numbers(set may be empty).
Now, let D be the sum of size of all M sets.(where the size of a set is number of elements in it)
Let $\mathbf{G}(\mathrm{i})=$ number of ways to form M sets such that D is equal to i .
Find $\mathbf{G}(0)+\mathbf{G}(1)+\ldots \ldots . . \mathbf{G}\left(\mathbf{N}^{\star} K\right)$ modulo $10^{\wedge} 9+7$.
Note: Ordering of sets matters as the sets are numbered.

For eg:

$\mathrm{N}=2, \mathrm{M}=2, \mathrm{~K}=2$
So, the numbers present initially are ($1,1,2,2$)
$\mathrm{G}(0)=1$,
\{ \}, \{ \}
$G(1)=4$,
\{1\}, \{\}
$\{2\},\{ \}$
\{\}, \{1\}
\{ \},\{2\}
$G(2)=6$,
\{1\},\{2\}
\{2\},\{1\}
\{1\},\{1\}
$\{2\},\{2\}$
$\{1,2\},\{ \}$
\{ $\},\{1,2\}$
$\mathrm{G}(3)=4$,
$\{1,2\},\{1\}$
\{1,2\},\{2\}
\{1\}, \{1,2\}
$\{2\},\{1,2\}$
$G(4)=1$,
$\{1,2\},\{1,2\}$
\{ \} represents empty set.
So answer $=G(0)+G(1)+G(2)+G(3)+G(4)=16$
Input Specification

First line of input consists of integer t denoting number of test cases.
Each of the next t lines contain 3 integers N, M, K where $N>=M>=K$

Output Specification

Output consists of t lines. Each line contains the answer modulo $10^{\wedge} 9+7$.

Constraint

1<=t<=100
$1<=M<=N<=100000$
$0<=\mathrm{K}<=\mathrm{M}$

Sample Input

3
222
431
311
Sample Output
16
256
8

