Minimum Step To One

Problem Statement:

Problem statement is very easy . On a positive integer, you can perform any one of the following 3 steps.

- **1.)** Subtract 1 from it. (n = n 1)
- **2.)** If its divisible by 2, divide by 2. (if n % 2 == 0, then n = n/2)
- **3.)** If its divisible by 3, divide by 3. (if n % 3 == 0, then n = n/3)

Given a positive integer n and you task is find the minimum number of steps that takes n to one .

Input:

The input contains an integer T ($1 \le T \le 100$) number of test cases. Second line input is N ($0 < N \le 2^*10^7$) that indicates the positive number.

Output:

For each case, print the case number and minimum steps.

Sample Input/Output:

Sample Input	Sample Output
3	Case 1:0
1	Case 2: 2
4	Case 3: 3
7	

For example :-

1.) For N= 1 , output: 0

- 2.) For N = 4, output: 2 (4 / 2 = 2 / 2 = 1)
- 3.) For N = 7 , output: 3 (7 -1 = 6 /3 = 2 /2 = 1)