Minimum Step To One

Problem Statement:

Problem statement is very easy. On a positive integer, you can perform any one of the following 3 steps.
1.) Subtract 1 from it. ($n=n-1$)
2.) If its divisible by 2 , divide by 2 . (if $\mathrm{n} \% 2==0$, then $\mathrm{n}=\mathrm{n} / 2$)
3.) If its divisible by 3 , divide by 3. (if $\mathrm{n} \% 3==0$, then $\mathrm{n}=\mathrm{n} / 3$)

Given a positive integer n and you task is find the minimum number of steps that takes n to one .

Input:

The input contains an integer $\mathbf{T}(1 \leq \mathbf{T} \leq 100)$ number of test cases. Second line input is $N\left(0<\mathbf{N} \leq 2^{*} 10^{\mathbf{7}}\right)$ that indicates the positive number.

Output:

For each case, print the case number and minimum steps.

Sample Input/Output:

Sample Input	Sample Output
3	Case 1:0
1	Case 2:2
4	Case 3:3
7	

For example :-
1.) For $N=1$, output: 0
2.) For $N=4$, output: $2(4 / 2=2 / 2=1)$
3.) For $N=7$, output: $3(7-1=6 / 3=2 \quad / \mathbf{2}=1)$

