Count Minimum Spanning Trees

Your task is simple in this problem: count the number of minimum spanning tree (Wikipedia) in a simple undirected graph. The number of minimum spanning trees mean in how many ways you can select a subset of the edges of the graphs which forms a minimum spanning tree.

Input

The first line of input contains two integers $\mathbf{N}(1 \leq \mathbf{N} \leq 100), \mathbf{M}(1 \leq \mathbf{M} \leq 1000)$. Nodes are labeled from 1 to \mathbf{N}. In the following \mathbf{M} lines, every line contains three integers $\mathbf{a}_{\mathbf{i}}, \mathbf{b}_{\mathbf{i}}, \mathbf{c}_{\mathbf{i}}$, representing an undirected edge from node $\mathbf{a}_{\mathbf{i}}$ to node $\mathbf{b}_{\mathbf{i}}$, with weight $\mathbf{c}_{\mathbf{i}}$. $\left(1 \leq \mathbf{a}_{\mathbf{i}} \neq \mathbf{b}_{\mathbf{i}} \leq \mathbf{N}, 1 \leq \mathbf{c}_{\mathbf{i}} \leq 1,000,000,000\right)$. You can assume there is at most one edge between two nodes, and the graph described by input is connected.

Output

Print the answer \% 31011.

Example

Input:
46
121
131
141
232
241
341
Output:
8

