Modular Tetration

The ordinary arithmetical operations of addition, multiplication and exponentiation are naturally extended into a sequence of hyperoperations as follows.
$3 \times 7=3+3+3+3+3+3+3$; there are 7 copies of " 3 "
$3^{\wedge} 7=3 \times 3 \times 3 \times 3 \times 3 \times 3 \times 3$; there are 7 copies of " 3 "
$3^{\wedge} 7=\left(3^{\wedge}\left(3^{\wedge}\left(3^{\wedge}\left(3^{\wedge}\left(3^{\wedge}\left(3^{\wedge} 3\right)\right)\right)\right)\right)\right.$; there are 7 copies of " $3^{\prime \prime}$
To extend the sequence of operations beyond exponentiation, Knuth defined a "double arrow" operator to denote iterated exponentiation (tetration) ^^ in ASCII notation.
This gives us some very big numbers, your task will be to compute modular tetration.
$\boldsymbol{X}^{\wedge} \mathbf{0}=1$ for all X, as an empty product. $\boldsymbol{X}^{\wedge \wedge} \mathbf{0}=\mathbf{1}$ for all X, for similar reason.

Input

The first line of input contains an integer \boldsymbol{T}, the number of test cases.
On each of the next \boldsymbol{T} lines, your are given three integers $\boldsymbol{X}, \boldsymbol{N}$, and \boldsymbol{M}.

Output

For each test case, you have to print $\boldsymbol{X}^{\wedge \wedge} \mathbf{N}$ modulo \boldsymbol{M}.

Example

Input:
3
3220
33345
993306745757073201000000000

Output:

7
312
884765625

Constraints

$0<T<=10^{\wedge} 4$
$\mathrm{X}, \mathrm{N}, \mathrm{M}$ unsigned 32bit integers
$1<M$

Explanations

$3^{\wedge \wedge 2}=3^{\wedge} 3=27=7[\bmod 20]$
$3^{\wedge \wedge} 3=3^{\wedge}\left(3^{\wedge} 3\right)=3^{\wedge} 27=7625597484987=312[\bmod 345]$
Problem designed to be solvable using some 'slow' languages like Python, under half the time limit.
It is recommended to solve first Power Tower City.
;-) Have fun.

