
Modular Tetration
The ordinary arithmetical operations of addition, multiplication and exponentiation are naturally
extended into a sequence of hyperoperations as follows.

3×7 = 3 + 3 + 3 + 3 + 3 + 3 + 3 ; there are 7 copies of "3"
3^7 = 3 × 3 × 3 × 3 × 3 × 3 × 3 ; there are 7 copies of "3"
3​​^ ​̂7 = (3^(3^(3^(3^(3^(3^3)))))) ; there are 7 copies of "3"

To extend the sequence of operations beyond exponentiation, Knuth defined a “double arrow”
operator to denote iterated exponentiation (tetration) ^^ in ASCII notation.
This gives us some very big numbers, your task will be to compute modular tetration.
X^0=1 for all X, as an empty product. X^^0=1 for all X, for similar reason.

Input

The first line of input contains an integer T, the number of test cases.
On each of the next T lines, your are given three integers X, N, and M.

Output

For each test case, you have to print X^ ​̂​N modulo M.

Example

Input:
3
3 2 20
3 3 345
993306745 75707320 1000000000

Output:
7
312
884765625

Constraints

0 < T <= 10^4
X, N, M unsigned 32bit integers
1 < M

Explanations

3^^2 = 3^3 = 27 = 7 [mod 20]
3^^3 = 3^(3^3) = 3^27 = 7625597484987 = 312 [mod 345]

Problem designed to be solvable using some 'slow' languages like Python, under half the time
limit.
It is recommended to solve first Power Tower City.
;-) Have fun.

http://en.wikipedia.org/wiki/Knuth's_up-arrow_notation
http://en.wikipedia.org/wiki/Tetration
http://www.spoj.com/problems/POWTOW/

	Modular Tetration
	Input
	Output
	Example
	Constraints
	Explanations

