Musical Optimization

Bessie the cow used to write musical melody. A musical melody is represented as a sequence of $N(1<=N<=100,000)$ notes numbered 1..N. Note i is represented by the integer $A_{i}(-10,000<=$ $\left.A_{i}<=10,000\right)$.

To Bessie's cow-like mind, a musical melody is called 'perfect' if and only if the sum of all the notes in any of its consecutive subsequences is strictly positive.

For a given musical melody, Bessie wants to make it perfect, but she wants to change the melody as little as possible.

Thus, to perfect the melody, she repeatedly chooses a consecutive subsequence of the melody, $[x, y](1<x<=y<N)$, whose sum S is negative. Then she adds S to both A_{x-1} and A_{y+1}, while subtracting S from both A_{x} and A_{y}. (It is possible to subtract from the same note twice if $x=y$.)

Given a musical melody, compute the minimum number of steps to make the melody perfect.

Input

*Line 1: The single integer N .

* Lines $2 . . \mathrm{N}+1$: Line $\mathrm{i}+1$ contains the single integer A_{i}.

Output

* Line 1: A single integer that represents the minimum number of steps needed to make the given musical melody perfect. If there are no solutions, output -1 instead.

Example

Input:

5
13
-3
-4
-5
62
Output:
2

Explanation

There is a musical melody with length of 5 . The notes are (13, $-3,-4,-5,62$).
First, we choose the range $[2,4]$; its sum is $(-3)+(-4)+(-5)=-12$. After the first step, the melody becomes ($1,9,-4,7,50$). Second, we choose the range [3, 3], whose sum is -4 , and the melody after the second step becomes ($1,5,4,3,50$). The melody is perfect now.

