Necklace

There are \mathbf{N} points marked on a surface, pair $\left(\mathbf{x}_{\mathbf{i}}, \mathbf{y}_{\mathbf{i}}\right)$ is coordinates of a point number i. Let's call a necklace a set of \mathbf{N} figures which fulfils the following rules.

- The figure \#i consists of all such points (\mathbf{x}, \mathbf{y}) that $\left(\mathbf{x}-\mathbf{x}_{\mathbf{i}}\right)^{2}+\left(\mathbf{y}-\mathbf{y}_{\mathbf{i}}\right)^{2} \leq \mathbf{r}_{\mathbf{i}}{ }^{2}$, where $\mathbf{r}_{\mathbf{i}} \geq 0$.
- Figures \#i and \#(i+1) intersect ($1 \leq \mathbf{i}<\mathbf{N}$).
- Figures \#1 and \#N intersect.
- All the rest pairs of figures do not intersect.

Write a program which takes points and constructs a necklace.

Input

First line of input contains an integer $\mathbf{t}(1 \leq \mathbf{t} \leq 45)$, equals to the number of testcases. Then descriptions of \mathbf{t} testcases follow.

The first line of the description contains one integer number $\mathbf{N}(2 \leq \mathbf{N} \leq 100)$. Each of the next \mathbf{N} lines contains two real numbers $\mathbf{x}_{\mathbf{i}}, \mathbf{y}_{\mathbf{i}}\left(-1000 \leq \mathbf{x}_{\mathbf{i}}, \mathbf{y}_{\mathbf{i}} \leq 1000\right)$, separated by one space. It is guaranteed that at least one necklace exists for each testcase.

Output

For each testcase your program should output exactly \mathbf{N} lines. A line \#i should contain real number $r_{i}\left(0 \leq r_{i}<10000\right)$. To avoid potential accuracy problems, a checking program uses the following rules.

- Figures \#i and \#j definitely do not intersect if $\mathrm{r}_{\mathrm{i}}+\mathrm{r}_{\mathrm{j}} \leq \mathrm{d}_{\mathrm{ij}}-10^{-5}$.
- Figures \#i and \#j definitely intersect if $\mathrm{d}_{\mathrm{ij}}+10^{-5} \leq \mathbf{r}_{\mathbf{i}}+\mathbf{r}_{\mathrm{j}}$.
- The case when $\mathrm{d}_{\mathrm{ij}}-10^{-5}<\mathrm{r}_{\mathrm{i}}+\mathrm{r}_{\mathrm{j}}<\mathrm{d}_{\mathrm{ij}}+10^{-5}$ is decided in favour of a contestant.
- $\mathbf{d}_{\mathbf{i j}}$ equals $\left.\operatorname{sqrt}\left(\mathbf{x}_{\mathbf{i}}-\mathbf{x}_{\mathbf{j}}\right)^{2}+\left(\mathbf{y}_{\mathbf{i}}-\mathbf{y}_{\mathbf{j}}\right)^{2}\right)$ in the rules above.

Example

Input:

1
4
00
100
1010
010
Output:
7
7
7
7

