NEO

Given array with n integer elements. We divide it into several part (may be 1), each part is a consecutive of elements. The NEO value in that case is computed by: Sum of value of each part. Value of a part is sum all elements in this part multiple by its length.

Example: We have array: [23 -2 1]. If we divide it look likes: [2 3] [-2 1]. Then NEO = (2 + 3) * 2 $+(-2+1) * 2=10-2=8$.

Because there are many ways to divide an array into several part, so we can get many of NEO value. Your task is find the NEO with maximum value.

Input

First line: T (number of test case, $\mathrm{T}<=10$)
For each of testcase:

+ First line: n ($1<=\mathrm{n}<=10^{\wedge} 5$)
+ Second line: $a[1], a[2], \ldots, a[n]\left(-10^{\wedge} 6<=a[i]<=10^{\wedge} 6\right)$

Output

Each testcase print the

Example

Input:
1

4
12-41

Output:

3

