Fractions on Tree (reloaded !)

A fraction tree is an infinite binary tree defined as follows:

1. Every node of tree contains a fraction.
2. Root of tree contains the fraction $1 / 1$.
3. Any node with fraction i / j has two children: left child with fraction $\mathrm{i} /(\mathrm{i}+\mathrm{j})$ and right child with fraction $(i+j) / j$.

For example, fraction tree up to 3 levels is as shown:

We number the nodes according to increasing levels (root is at level 1) and at any same level, nodes are numbered from left to right. So first node holds the fraction $1 / 1$, second one holds $1 / 2$, third one holds $2 / 1$ fourth one holds $1 / 3$ and so on.

Your task is simple, as always! Given two numbers a and b, you are to find the product of fractions at all those nodes whose number is between a and b both inclusive.

Input

Every line of the input contains two numbers a and b separated by a space. You are to find the product of all fractions which are at node having number between a and b both inclusive. Input file terminates with a 00 which is not to be processed.

Output

For each input, print numerator and denominator of the lowest form of the fraction separated by a /. Output of each case to be on separate lines.

Example

Input:

11
12
24
00

Output:

1/1
1/2

Constraints
$1<=T<=30000$
$1<=a<=b<=10^{\wedge} 10$

