Billboard painting

English

A group of K painters has to paint a rectangular billboard of size 1 xN . The billboard is divided into N cells of size 1×1. The cells are numbered from 1 to N in left to right order.

The i-th painter $(1 \leq i \leq K)$ is currently standing in front of the cell S_{i}. He either can paint no cells at all or can paint a consecutive number of cells that must containt the cell S_{i}. Moreover, he can only paint at most L_{i} cells, and for each painted cell, he will receive a payment of P_{i} dollars. Each cell can be painted by at most one person.

Your task is to find a way for the painters to receive the largest amount of payment.

Input

- The first line of the input contains two positive integers $\mathrm{N}, \mathrm{K}(\mathrm{N} \leq 16000 ; \mathrm{K} \leq 100)$.
- The i-th line of the next K lines contains three positive integers $L_{i}, P_{i}, S_{i}(i=1,2, \ldots K)$ separated by spaces $\left(1 \leq P_{i} \leq 10000,1 \leq L_{i}, S_{i} \leq N\right)$. The numbers $S_{1}, S_{2}, \ldots S_{K}$ are pairwise distinct.

Output

A single line contains the largest payment that the painters can receive.

Example

Input

84
322
323
335
117

Output

17
The first painter will paint the first two cells, the second painter will paint the next two cells, the third one will paint the remaining cells and the last won't have to paint any cells.

