Nearest Neighbor Search

You are given $\mathrm{N}(\mathrm{N}<=100000)$ d-dimensional ($1<=\mathrm{d}<=5$) points, each having integer coordinates ($\mathrm{X} 1, \mathrm{X} 2, \ldots, \mathrm{Xd}$). Then $\mathrm{Q}(\mathrm{Q}<=100000)$ queries follow. For each query you are given a d-dimensional point (not necessarily from the given N) and you are to find the squared Euclidean distance to the closest point from the given N .

The coordinates of all N+Q points are generated randomly between -1 000000000 and 1000 000000.

The squred Euclidean distance between two points A and B is the sum of (A.Xi-B.Xi)*(A.Xi-B.Xi) for $i=1,2, \ldots, d$.

Input

The first line contains three numbers - N, d and Q .
The next N lines contain d integers each - the coordinates of a point.
The next Q lines contain d integers each - the coordinates of a query point.

Output

Print the answer for each of the Q queries on separate lines.

Example

Input:

222
11
22
11
33
Output:
0
2

