Derangements HARD

A derangement of n numbers is a permutation of those numbers in which none of the numbers appears in its original place. For example, the numbers $\{1,2,3\}$ can be deranged into $\{2,3,1\}$ and $\{3,1,2\}$. We can modify this slightly for n numbers that are not necessarily distinct by saying that no number in the derangement can be in the place that a number of the same value was in in the original ordering. So the numbers $\{1,1,2,2,3\}$ could be deranged into $\{2,2,1,3,1\},\{2,2,3$, $1,1\},\{2,3,1,1,2\}$, and $\{3,2,1,1,2\}$.

Input

First line contains $T(1<=T<=100)$ the number of test cases. Each test case contains two lines. First line contains an integer $N(1<=N<=15)$ denoting total number of elements in the array. Second line contains a space separated list of N integers Ai such that $0<=\mathrm{Ai}<\mathrm{N}$.

Output

For each test case output an integer, the total number of derangements of the array.

Example

```
Input:
2
5
11223
6
000111
```


Output:

4
1

