NSquare Sum (Easy)

Given two integers $\mathrm{N}\left(\mathrm{N}<=10^{\wedge} 18\right.$) and a prime number $\mathrm{P}\left(1<\mathrm{P}<10^{\wedge} 18\right.$), find the lowest number x such that there're not N integers greater or equal to 0 whose sum of squares is equal to x .
$N=2, P=2$
$X=3 \mathrm{mod} 2$
$=1$
$0=0^{2}+0^{2}$
$1=1^{2}+0^{2}$
$2=1^{2}+1^{2}$
$4=2^{2}+0^{2}$

Input

There're two integers $N\left(1<=N<=10^{\wedge} 18\right)$ and a prime number $P\left(1<P<10^{\wedge} 18\right)$. You have to print the answer modulo P.

Output

You have to print an integer x mod $P\left(-1<x<10^{\wedge} 18+1\right)$ that satisfies the problem. If there's no number x, print "Impossible".

Example

Input:
13
Output:
2
Input:
137
Output:
Impossible

