Number Game

Arya and Bran are playing a game. Initially, two positive integers \mathbf{A} and \mathbf{B} are written on a blackboard. The players take turns, starting with Arya. On his or her turn, a player can replace \mathbf{A} with $\mathbf{A}-\mathbf{k}^{*} \mathbf{B}$ for any positive integer \mathbf{k}, or replace \mathbf{B} with $\mathbf{B}-\mathbf{k}^{*} \mathbf{A}$ for any positive integer \mathbf{k}. The first person to make one of the numbers drop to zero or below loses.

For example, if the numbers are initially $(12,51)$, the game might progress as follows:

- Arya replaces 51 with $51-3^{*} 12=15$, leaving $(12,15)$ on the blackboard.
- Bran replaces 15 with $15-1^{*} 12=3$, leaving $(12,3)$ on the blackboard.
- Arya replaces 12 with $12-3 * 3=3$, leaving $(3,3)$ on the blackboard.
- Bran replaces one 3 with $3-1 * 3=0$, and loses.

We will say (\mathbf{A}, \mathbf{B}) is a winning position if Arya can always win a game that starts with (\mathbf{A}, \mathbf{B}) on the blackboard, no matter what Bran does.

Given four integers $\mathbf{A}_{\mathbf{1}}, \mathbf{A}_{\mathbf{2}}, \mathbf{B}_{\mathbf{1}}, \mathbf{B}_{\mathbf{2}}$, count how many winning positions (\mathbf{A}, \mathbf{B}) there are with $\mathbf{A}_{\mathbf{1}} \leq$ $\mathrm{A} \leq \mathrm{A}_{\mathbf{2}}$ and $\mathrm{B}_{\mathbf{1}} \leq \mathrm{B} \leq \mathrm{B}_{\mathbf{2}}$.

Input

The first line of the input gives the number of test cases, \mathbf{T}. \mathbf{T} test cases follow, one per line. Each line contains the four integers $\mathbf{A}_{\mathbf{1}}, \mathbf{A}_{\mathbf{2}}, \mathbf{B}_{1}, \mathbf{B}_{\mathbf{2}}$, separated by spaces.
$1 \leq \mathbf{T} \leq 250$.
$1 \leq \boldsymbol{A}_{\mathbf{1}} \leq \boldsymbol{A}_{\mathbf{2}} \leq 1,000,000$.
$1 \leq \boldsymbol{B}_{1} \leq \boldsymbol{B}_{2} \leq 1,000,000$.
$\mathbf{A}_{\mathbf{2}}-\mathbf{A}_{\mathbf{1}} \leq 999,999$.
$\mathbf{B}_{2}-\mathbf{B}_{1} \leq 999,999$.

Output

For each test case, output one line containing "Case \#x: y ", where x is the case number (starting from 1), and y is the number of winning positions (\mathbf{A}, \mathbf{B}) with $\mathbf{A}_{\mathbf{1}} \leq \mathbf{A} \leq \mathbf{A}_{\mathbf{2}}$ and $\mathbf{B}_{\mathbf{1}} \leq \boldsymbol{B} \leq \boldsymbol{B}_{\mathbf{2}}$.

Example

Input:

3

Output:

Case \#1: 0
Case \#2: 1
Case \#3: 20

