Partition

A partition of positive integer m into n components is any sequence a_{1}, \ldots, a_{n} of positive integers such that $a_{1}+\ldots+a_{n}=m$ and $a_{1}<=a_{2}<=\ldots<=a_{n}$. Your task is to determine the partition, which occupies the k-th position in the lexicographic order of all partitions of m into n components.

The lexicographic order is defined as follows: sequence a_{1}, \ldots, a_{n} comes before b_{1}, \ldots, b_{n} iff there exists such an integer $\mathrm{i}, 1<=\mathrm{i}<=\mathrm{n}$, that $\mathrm{a}_{\mathrm{j}}=\mathrm{b}_{\mathrm{j}}$ for all $\mathrm{j}, 1<=\mathrm{j}<\mathrm{i}$, and $\mathrm{a}_{\mathrm{i}}<\mathrm{b}_{\mathrm{i}}$.

Input

The input begins with the integer t, the number of test cases. Then t test cases follow.
For each test case the input consists of three lines, containing the positive integers m, n and k respectively $(1<=n<=10,1<=m<=220, k$ is not larger than the number of partitions of m into n components).

Output

For each test case output the ordered elements of the sought partition, separated by spaces.

Example

Sample input:

1
9
4
3

Sample output:

1134

