Partial Sums

Given a sequence of positive integers $a_{1}, a_{2}, \ldots, a_{N}$, and $1 \leq i \leq j \leq N$, the partial sum from i to j is $a_{i}+a_{i+1}+\ldots+a_{j}$.

In this problem, you will be given such a sequence and two integers P and K. Your task is to find the smallest partial sum modulo P that is at least K.

For example, consider the following sequence of integers:

12	13	15	11	16	26	11

Here $N=7$. Suppose $K=2$ and $P=17$. Then, the answer is 2 because $11+16+26=53$ and 53 mod 17 is 2 . On the other hand, if $K=0$ the answer is 0 since $15+11+16+26=68$ and 68 mod 17 is 0 .

You may assume $1 \leq N \leq 100000$.

Input

The first line of the input contains the number of test cases, T.
Each test case begins with a line containing three integers, N, K and P. This is followed by the values of $a_{1}, a_{2}, \ldots, a_{N}$, one per line.

Output

Output one line per test case, containing the smallest partial sum modulo P that is at least K, as described above.

Example

Input:
1
7217
12
13
15
11
16
26
11

Output:
2
Warning: large Input/Output data, be careful with certain languages

