A conjecture of Paul Erdős (hard)

In number theory there is a very deep unsolved conjecture of the Hungarian Paul Erdős (19131996), that there exist infinitely many primes of the form $x^{2}+1$, where x is an integer. However, a weaker form of this conjecture has been proved: there are infinitely many primes of the form $x^{2}+y^{4}$. You don't need to prove this, it is only your task to find the number of (positive) primes not larger than n which are of the form $x^{2}+y^{4}$ (where x and y are integers).

Input

An integer T, denoting the number of testcases ($T \leq 500000$). Each of the T following lines contains a positive integer n, where $n \leq 10^{12}$.

Output

Output the answer for each n.

Example

Input:

6
1
2
10
9999999
500000000000
1000000000000

Output:

0
1
2
13175
25874902
42377120
ps. my running time on Cube is 9.83 seconds. There is one input set.
For a much easier version of this problem see http://www.spoj.com/problems/HS08PAUL.

