Paying in Byteland

There are infinitely many coin denominations in the Byteland. They have values of $2^{\wedge} \mathrm{i}$ for $\mathrm{i}=0,1,2, \ldots$. We will say that set of coins $\mathrm{c} 1, \mathrm{c} 2, \ldots, \mathrm{ck}$ is perfect when it is possible to pay every amount of money between 0 and $c 1+\ldots+c k$ using some of them (so $\{4,2,2,1\}$ is perfect while $\{8,1\}$ is not). The question is - is it always possible to change given sum n into a perfect set of coins? Of course it is possible ;). Your task will be more complicated: for a sum n you should find minimal number of coins in its perfect representation.

Input

First line of input contains one integer $\mathrm{c}<=50$ - number of test cases. Then c lines follow, each of them consisting of exactly one integer $\mathrm{n}<=10^{\wedge} 1000$.

Output

For each test case output minimal number of coins.

Example

Input:

5
507
29
8574
233
149
Output:
14
7
21
11
10

