Periodic function, trip 3

Solar cycle predictions are used by various agencies and many industry groups. The solar cycle is important for determining the lifetime of satellites in low-Earth orbit, as the drag on the satellites correlates with the solar cycle [...]. (NOAA)

(Solar Cycle)

Sunspot Number Progression : Observed data through May 2008 ; Dec 2012 ; Nov 2014

The goal of the problem is to propose a perfect prediction center, with weak constraints.
Let us consider periodic functions from \mathbf{Z} to \mathbf{R}.
def $f(x)$: return [4, -6, 7][x\%3] \# (with Python notations)
\# 4, -6, 7, 4, -6, 7, 4, -6, 7, 4, -6, 7, 4, -6, 7, ...
For example, fis a 3-periodic function, with $f(0)=f(3)=f(6)=f(9)=4$.
With a simplified notation we will denote f as $[4,-6,7]$.
For two periodic functions (with integral period), the quotient of periods will be rational, in that case it can be shown that the sum of the functions is also a periodic function. Thus, the set of all such functions is a vector space over \mathbf{R}.

For that problem, we consider a function that is the sum of several periodic functions all with as period an integer N at maximum. You will be given some starting values, you'll have to find new ones.

Input

On the first line, you will be given an integer N.
On the second line, you will be given integers y : the first (0 -indexed) $N \times N$ values of a periodic function f that is sum of periodic functions all with as period an integer N at maximum.
On the third line, you will be given $N \times N$ integers x.

Output

Print $f(x)$ for all required x. See sample for details.

Example

Input:

3
15317216415317
101001000100001000001000000100000001000000001000000000

Output:

161616161616161616

Explanation

For example f can be seen as the sum of three periodic functions : $[10]+[5,-8]+[0,1,2]$ (with simplified notations ; periods are 1,2 and 3)
In that case $f(10)=[10][10 \% 1]+[5,-8][10 \% 2]+[0,1,2][10 \% 3]=10+5+1=16$, and so on.

Constraints

$\mathrm{N}<51$
abs (y) < 10^9
$0<x<10^{\wedge} 9$

Informations

The problem is not simple, but constraints allow easy coding with C-like languages. You can safely assume output fit in a signed 32bit container. Time limit is at least $\times 4$ my basic C timing. It could be hard with slow languages. There's 4 input files, with increasing value of N . You may first try the easy edition PERIOD4. Have fun ;-)
edit(09/06/2016) If it's too easy ; PERIOD5 is made for you.

