Check 1324

Given a permutation $\mathrm{P}[1 . . . \mathrm{n}]$ of $\{1,2, \ldots \mathrm{n}\}$, you should output if the permutation contains a pattern of the form 1324. That is, do there exist indices $1<=\mathrm{i} 1<\mathrm{i} 2<\mathrm{i} 3<\mathrm{i} 4<=\mathrm{n}$ such that $\mathrm{P}[\mathrm{i} 1]<\mathrm{P}[\mathrm{i} 3]<$ $\mathrm{P}[\mathrm{i} 2]<\mathrm{P}[i 4]$. For example, $\mathrm{P}=68549372110$ contains one: the indices 1, 2, 7, 10 correspond to the sequence 68710 which is a 1324 pattern.

Input

First line contains T, the number of test cases
Each of the next T lines contains $\mathbf{n}(1<=\mathrm{n}<=100000)$, followed by \mathbf{n} integers, representing a permutation of $[1,2, . ., n]$.
$\operatorname{SUM}\left(\mathrm{n}\right.$ * $\left.\log _{2}(\mathrm{n})\right)$ over all test cases $<=10^{8}$. Do not assume anything else about the number of test cases or their distribution.

Output

Output T lines, one per test case: "yes"(without quotes) if the permutation contains a 1324 pattern or "no" (without quotes) otherwise.

Warning: Huge I/O

Example

Input:
2
1068549372110
1053479108621

Output:

yes
no

