Permutations

Let $A = [a_1, a_2, ..., a_n]$ be a permutation of integers 1, 2, ... n. A pair of indices (i, j), $1 \le i \le j \le n$, is an *inversion* of the permutation A if $a_i > a_j$. We are given integers n > 0 and $k \ge 0$. What is the number of n-element permutations containing exactly k inversions?

For instance, the number of 4-element permutations with exactly 1 inversion equals 3.

Task

Write a program which for each data set from a sequence of several data sets:

- reads integers n and k from input,
- computes the number of n-element permutations with exactly k inversions,
- writes the result to output.

Input

The first line of the input file contains one integer d, $1 \le d \le 10$, which is the number of data sets. The data sets follow. Each data set occupies one line of the input file and contains two integers n ($1 \le n \le 12$) and k ($0 \le k \le 98$) separated by a single space.

Output

The i-th line of the output file should contain one integer - the number of n-element permutations with exactly k inversions.

Example

Input:

1

41

Output: 3