Permutations

Let $\mathrm{A}=\left[\mathrm{a}_{1}, \mathrm{a}_{2}, \ldots \mathrm{a}_{\mathrm{n}}\right]$ be a permutation of integers $1,2, \ldots \mathrm{n}$. A pair of indices $(\mathrm{i}, \mathrm{j}), 1<=\mathrm{i}<=\mathrm{j}<=\mathrm{n}$, is an inversion of the permutation A if $a_{i}>a_{j}$. We are given integers $n>0$ and $k>=0$. What is the number of n-element permutations containing exactly k inversions?

For instance, the number of 4-element permutations with exactly 1 inversion equals 3 .

Task

Write a program which for each data set from a sequence of several data sets:

- reads integers n and k from input,
- computes the number of n-element permutations with exactly k inversions,
- writes the result to output.

Input

The first line of the input file contains one integer $\mathrm{d}, 1<=\mathrm{d}<=10$, which is the number of data sets. The data sets follow. Each data set occupies one line of the input file and contains two integers $\mathrm{n}(1<=\mathrm{n}<=12)$ and $\mathrm{k}(0<=\mathrm{k}<=98)$ separated by a single space.

Output

The i-th line of the output file should contain one integer - the number of n-element permutations with exactly k inversions.

Example

Input:

1
41

Output:
3

