Evaluate the polynomial

Your task consists of evaluate a polynomial of degree $\mathbf{n}(\mathbf{0}<=\mathbf{n}<=\mathbf{9 9 9})$ represented by its $\mathbf{n + 1}$ coefficients of the form:

$$
p_{n}(x)=c_{n} x^{n}+c_{n-1} x^{n-1}+\ldots+c_{2} x^{2}+c_{1} x+c_{0}
$$

in each one of the $\mathbf{k}(\mathbf{1}<=\mathbf{k}<=\mathbf{1 0 0})$ points $\mathbf{x}_{1}, \mathbf{x}_{\mathbf{2}}, \ldots, \mathbf{x}_{\mathbf{k}}$. The coefficients of the polynomial and the values where they will be evaluated are integers in the interval $[-100,100]$ that guarantees that the polynomial's evaluation is at the most $\mathbf{2}^{63} \mathbf{- 1}$.

Input

There will be multiple test cases, each one with $\mathbf{4}$ lines that are described below \mathbf{n} : degree of polynomial.
$\mathrm{c}_{\mathrm{n}} \mathrm{c}_{\mathrm{n}-1} \ldots \mathrm{c}_{\mathbf{2}} \mathrm{c}_{1} \mathrm{c}_{0}$: coefficients of the polynomial separated by a single space.
\mathbf{k} : number of points to evaluate the polynomial.
$\mathbf{x}_{1} \mathbf{x}_{2} \ldots \mathbf{x}_{\mathbf{k}-1} \mathbf{x}_{\mathbf{k}}$: points to evaluate the polynomial separated by a single space.
The final test case is a single line where $\mathbf{n = - 1}$ and this case should not be processed.

Output

For each test case you should print $\mathbf{k} \boldsymbol{+} \mathbf{1}$ lines of output, the very first line containing the case number and the following \mathbf{k} lines with the result of the polynomial's evaluation in each one of the \mathbf{k} given points. See the sample.

Example

Input:
2
1-2-1
5
01-12-2
3
2 1-2-1
4
0-1 2-2
-1

Output:

Case 1:

