Polynomial $f(x)$ to Polynomial $h(x)$

Given polynomial of degree $d, f(x)=c_{0}+c_{1} x+c_{2} x^{2}+c_{3} x^{3}+\ldots+c_{d} x^{d}$
For each polynomial $f(x)$ there exists polynomial $g(x)$ such that:

- $f(x)=g(x)-g(x-1)$ for each integer x
- $g(0)=0$

Your task is to calculate polynomial $h(x)=g(x) / x$.
(Note : degree of polynomial $h(x)=$ degree of polynomial $f(x)$)

Input

The first line of input contain an integer T, T is number of test cases $\left(0<T \leq 10^{4}\right)$

Each test case consist of 2 lines:

- First line of the test case contain an integer d, d is degree of polynomial $f(x)(0 \leq d \leq 18)$
- Next line contains $d+1$ integers $c_{0}, c_{1} \ldots c_{d}$, separated by space, represent the coefficient of polynomial $\mathrm{f}(\mathrm{x})\left(-2^{31}<\mathrm{c}_{0}, \mathrm{c}_{1} \ldots \mathrm{c}_{\mathrm{d}}<2^{31}\right.$ and $\left.\mathrm{c}_{\mathrm{d}} \neq 0\right)$

Output

For each test case, output the coefficient of polynomial $h(x)$ separated by space. Each coefficient of polynomial $h(x)$ is guaranteed to be an integer.

Example

Input:

5
0
13
1
-1 2
1
02
2
2-59
3
23921104

Output:

13
01
11
123
31415926

Explanation

First Test Case

- $f(x)=13$
- $g(x)$ that satisfy: $g(x)-g(x-1)=f(x)=13$ and $g(0)=0$ is: $g(x)=13 x$
- $h(x)=g(x) / x$ so $h(x)=13$
- output:13

Second Test Case

- $f(x)=-1+2 x$
- $g(x)$ that satisfy: $g(x)-g(x-1)=f(x)=-1+2 x$ and $g(0)=0$ is: $g(x)=x^{2}$
- $h(x)=g(x) / x$ so $h(x)=x=0+1 x$
- output: 01

Third Test Case

- $f(x)=0+2 x$
- $g(x)$ that satisfy: $g(x)-g(x-1)=f(x)=2 x$ and $g(0)=0$ is: $g(x)=x+x^{2}$
- $h(x)=g(x) / x$ so $h(x)=1+1 x$
- output:11

See also: Another problem added by Tjandra Satria Gunawan

