Polygon Encoder

Imagine an infinite table with rows and columns numbered using the natural numbers. The following figure shows a procedure to traverse such a table assigning a consecutive natural number to each table cell:

This enumeration of cells can be used to represent complex data types using natural numbers:

- A pair of natural numbers (i, j) is represented by the number corresponding to the cell in row i and column j. For instance, the pair $(3,2)$ is represented by the natural number 17 ; this fact is noted by $\mathrm{P} 2(3,2)=17$.
- The pair representation can be used to represent n-tuples. A triplet (a, b, c) is represented by P2(a, P2(b, c)). A 4-tuple (a, b, c, d) is represented by P2(a, P2(b, P2(c, d))). This procedure can be generalized for an arbitrary n :

$$
\operatorname{Pn}(a 1, \ldots, a n)=P 2(a 1, \operatorname{Pn}-1(a 2, . ., a n)),
$$

where Pn denotes the n-tuple representation function, $n>=2$. For example $P 3(2,0,1)=12$.

- A list of arbitrary length ha1, \ldots, ani is represented by

$$
\mathrm{L}(\text { ha1 }, \ldots, \text { ani })=\mathrm{P} 2(\mathrm{n}, \operatorname{Pn}(\mathrm{a} 1, \ldots, a n))
$$

For example, L(h0, 1i) = 12 .

The Association of Convex Makers (ACM) uses this clever enumeration scheme in a polygon representation system. The system can represent a polygon, defined by integer coordinates, using a natural number as follows: given a polygon defined by a vertex sequence $h(x 1, y 1), \ldots$, $(\mathrm{xn}, \mathrm{yn}) \mathrm{i}$ assign the natural number:

$$
\mathrm{L}((\mathrm{hP} 2(\mathrm{x} 1, \mathrm{y} 1), \ldots, \mathrm{P} 2(\mathrm{xn}, \mathrm{yn}))) .
$$

ACM needs a program that, given a natural numbers that represents a polygon, calculates the area of the polygon. It is guaranteed that the given polygon is a simple one, i.e. its sides do not intersect.

As an example of the problem, the triangle with vertices at $(1,1),(2,0)$ and $(0,0)$ is codified with the number 2141. The area of this triangle is 1 .

Input

The input consists of several test cases. Each test case is given in a single line of the input by a natural number representing a polygon. The end of the test cases is indicated with *.

Output

One line per test case, preserving the input order. Each output line contains a decimal number telling the area of the corresponding encoded polygon. Areas must be printed with 1 decimal place, truncating less significative decimal places.

Example

Input:
2141
206
157895330

Output:

1.0
0.5
1.0

